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The reattachment and relaxation of 
a turbulent shear layer 

By P. BRADSHAW AND F. Y. F. WONG 
Department of Aeronautics, Imperial College, London 

(Received 30 April 1971) 

Existing experiments on the low-speed flow downstream of steps and fences, 
and some new measurements downstream of a backward-facing step, are used to 
demonstrate the complicated nature of the flow in the reattachment region and its 
effect on the slow non-monotonic return of the shear layer to  the ordinary 
boundary-layer state. A key feature of the flow is found to be the splitting of the 
shear layer a t  reattachment, where part of the flow is deflected upstream into the 
recirculating flow region to  supply the entrainment; the part of the flow that 
continues downstream suffers a pronounced decrease in eddy length scale, 
evidently because the larger eddies are torn in two. This phenomenon will occur 
in all cases where a shear layer reattaches after a prolonged region of separation, 
either a t  low speed or in supersonic flow. For simplicity, the discussion in the 
present paper is confined t o  low-speed flows. 

1. Introduction 
Xethods for calculating turbulent boundary layers and other thin shear 

layers arc now sufficiently realistic and reliable for useful attempts to be made 
t o  calculate the more complicated flows that occur in engineering practice. Since 
experimenters, like theoreticians, have tended to concentrate on thin shear 
layers, there is a great need for data to formulate and test calculation methods. 
An important class of flows, and an obvious target for extension of thin-shear- 
layer studies, is the class of strongly perturbed shear layers: we are often in- 
terested both in the immediate response to the perturbation and in the relaxation 
back to  the thin-shear-layer state. By definition we are usually concerned with 
perturbations strong enough to  invalidate the boundary-layer approximation, 
and the most common perturbations of this sort are those involving separation 
and reattachment. There have been many investigations of separation ‘bubbles ’ 
on aerofoils or near discontinuities in surface slope, but the few experiments on 
boundary-layer relaxation after reattachment all leave something to  be desired; 
their main shortcomings arc over-complicated configurations and over-optimistic 
interpretations of the results. The purpose of this paper is to review the existing 
experimental results, to present some new measurements which demonstrate the 
essential phenomena of reattaching flows rather more clearly than previous 
experiments and to  comment on the causes of these phenomena, which must be 
represented in calculation methods. 
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That present-day boundary-layer calculation methods will not cope with 
flows just after reattachment was clearly demonstrated at  the 1968 Stanford 
meeting (Mine, Morltovin, Sovran & Cockrell 1969), comparisons with the 
measurements of Tillman (1945) behind a square ledge ranging from poor to 
extremely poor. Very close to reattachment the boundary-layer approximation 
used in these methods is violated b u t  the discrepancies between calculation and 
experiment further tlowiistrram imply that the turbulence structure takes a long 
time to relax to that found in an ordinary boundary layer (and in ordinary 
calculation models). Similar discrepancies would be expected in comparisons with 
the othor measurements in reattaching flows. 
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FIGURE 1. Experimental configurations. (a)-(f) not to scale. (a) Tillman (1945). ( b )  Ario & 
Rouse (1956). (c) Tani et al. (1961). ( d )  Muoller Ji Robertson (1963). ( e )  Plate & Lin (1964). 
(f) Petryk & Brundrett (1967). ( q )  Present experiment (to scale). 

The configurations used by some previous experimenters are shown in figures 
1 (a)-( f ) .  Here So is the boundary-layer thickness a t  the obstacle position in the 
absence of the obstacle. The distance to  reattachment and the distance to the 
last measurement station are shown (not to scale) as multiples of the obstacle 
height h. In  every case where measurements have been made well downstream of 
reattachment (figures 1 (d)-(f)) the initial boundary-layer thickness is of the same 
order as the height of the obstacle and, with the possible exception of the measure- 
ments of Mueller & Robertson (1963), two separations and reattachments occur. 
The length of the second separation region is strongly affccted by the initial 
inclination of the dividing streamline and therefore by the details of the first 
separation region. For these reasons i t  is not possible to  distinguish between the 
influence of the obstacle and that of the upstream boundary layer. All the recent 
authors including Coles (Coles & Hirst 1969), in his analysis of Tillman's ( 1  945) 
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data, assume that the mean velocity follows the logarithmic ‘law of the wall’ 
close to the surface, although Petryk & Brundrett (1967)  note ‘a  small defect in 
the wall region ’ and Coles had reservations about the wall-wake formulation for 
Tillman’s flow. All the recent authors listed in figures 1 (b)-(f) imply that the 
surface shear-stress coefficient returns monotonically to the constant-pressure 
equilibrium value and that it does so a t  a downstream distance no more than 
50 times the height of the obstacle. The present results show clearly that neither 
is the case; as noted by Coles, the return to  equilibrium is very slow. 

The present measurements were made behind a simple backward-facing step 
(figure 1 (9 ) )  with a thin laminar boundary layer a t  separation, and were con- 
tinued far enough downstream for the boundary layer to have returned to  a 
nearly normal state (though not yet t o  an equilibrium state). Even in this, the 
simplest possible reattaching flow, the effects of the perturbation on the turbu- 
lence structure make conventional boundary-layer calculation methods inappli- 
cable for many boundary-layer thicknesses downstream of reattachment. A few 
turbulence measurements have been made, and some indirect information about 
the turbulence structure has been obtained by ‘ numerical experiments’, which 
alter the empirical input of a calculation method to force agreement with the 
experimental results. The results have been used to form a self-consistent picture 
of the flow; they should also beuseful asa test case for future calculation methods. 

Section 2 ofthis paperis areview of previous work, both on the relaxation region 
itself, and on the separated-flow and reattachment regions that constitute the 
perturbation. I n  $ 3  some new measurements in the relaxation region behind a 
backward-facing step are presented; it appeared to  us that a proper investigation 
of relaxation problems should start with a simple perturbation of a thin initial 
boundary layer. I n  94 the new data are used in a ‘numerical experiment’ to  find 
the changes in the boundary-layer calculation method of Bradshaw, Ferriss & 
Atwell (1967)  that are required to  optimize agreement with the measurements 
(we do not offer the modified method for general use in relaxing flows). The 
resulting indirect information about the turbulence provides an important clue 
to  the gross changes in eddy structure that occur in the reattachment region; 
these changes are discussed in 3 5 .  It is concluded that the key parameter in the 
problem is the fraction of the shear-layer mass flow that is deflected upstream a t  
reattachment. If this fraction is appreciable the large eddies in the shear layer are 
virtually torn in two, producing a turbulence structure that must differ greatly 
from that found in any conventional shear flow. 

2. Review of previous experiments 
2.1. Definition of perturbation strength 

It is helpful t o  distinguish and define three strengths of perturbation that can be 
applied to an initially thin shear layer. 

(i) A weakperturbation is one in which the velocity and length scales of the flow 
are altered without significant change in the dimensionless properties of the 
turbulence structure like the shapes of correlation curves or the ratio of one 
intensity component to another. Examples are discussed by Tani in Kline et al. 
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(1969). Generally speaking, the response to weak perturbations, such as a change 
of pressure gradient or roughness, should be predictable by conventional calcula- 
tion methods for thin shear layers. 

(ii) A strong pertzcrbation is one in which the turbulence structure is signifi- 
cantly a.ltered (a rough and ready measure of this being the inability of thin-shear- 
layer calculation methods to  predict the flow) but where the flow is recognizable 
throughout as a perturbed form of a specific kind of shear layer. An example is a 
bounda,ry layer flowing over a cavity only a few boundary-layer thicknesses long. 

(iii) An overwhelmiizg perturbation is one in which the shear layer changes to 
one of a different species, as in the mutation of a boundary layer into a wakeor 
mixing layer. 

Region of 
rapid distortion - - c’, - 0 ( I  Oh) 

’- S,, Original shear layer + 
of new shear layer 

* rcattaching ’ boundary laycr 

streamline 
New shear layer 

Ilecirculation 
r q i o n  

I 
Bifurcation of 
new shear layer 

FIGURE 2. Goneral bohnviorir of typical roattacliing flow. 

In the case of a single separation and reattachment the strength of the pertur- 
bation, as measured at the reattachment point, say, depends on how far the new 
shear layer that borders the reversed-flow region has spread into the original 
shear layer. Studies of ‘internal boundary layers’, the new shear layers that 
grow outward from the surface after a small change of roughness (weak pertur- 
bation), show that the properties on a given streamline outside the new shear 
layer are virtually unaffected, and unpublished nieasurements in a plane mixing 
layer by I. S. F. Jones at  the National Physical Laboratory suggest that the same 
can be true of the flow downstream of separation. Considering for simplicity the 
case of flow down a backward-facing step (figure 2),  in which the distance the new 
shear layer sprcads into the original shear layer by the time reattachment occurs 
is very roughly equal to the step height h, we see that the strength of the per- 
turbation can be classified by the value of h/6,. 

(i) Weak perturbation: h/6, < 1. 
(ii) Strong perturbation: h/do = O(1).  
(iii) Overwhelming Perturbation: h/6, + 1 .  
The original shear layer is, of course, influenced by the side effects of separation, 

such as curvature of the mean streamlines and the region of rapid distortion 
induced by the pressure field near reattachment, while the new shear layer splits 
roughly in half at reattachment. The relative importance of all these effects is 
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difficult to assess and i t  appears, paradoxically, that an overwhelming perturba- 
tion will be simpler to  understand than a strong perturbation because the former 
is less dependent on the initial boundary layer. Strictly, the flow of a thin 
boundary layer over a backward-facing step involves two ‘ overwhelming ’ 
perturbations (boundary layer to mixing layer and mixing layer back to boundary 
layer) but the first perturbation can be ignored and the flow treated as if a fully 
developed mixing layer appeared a t  the separation point. On the other hand, 
existing experiments on fences or forward-facing steps not only have 

h/So = O( 1 )  

but involve two separation regions (two ’strong’ perturbations), and are the 
hardest of all to understand. The case h/So < 1 ,  in which the perturbation is con- 
fined to  the inner layer, is discussed by Hastings (1 963). 

2.2. The ‘relaxing’ flow downstream of the perturbation region 

The most useful single parameter for measuring the departure of a turbulent 
boundary layer from equilibrium is the Clauser parameter 

in the usual notation. According to the data of Coles (1962) G is about 6.8 in an 
equilibrium constant-pressure boundary layer a t  high Reynolds number. I n  
figure 3 ,  G is plotted against distance from the obstacle divided by obstacle height 
for the experiments of Tillman (1945) ,  Mueller & Robcrtson (1 963) and Petryk & 
Brundrett (1967). I n  these experiments cf was determined by assuming the 
validity of the logarithmic inner law, either directly (Tillman, as analysed by 
Coles & Hirst (1969) ,  and Nueller & Itobertson) or in the form of a Preston tube 
calibration (Petryk & Brundrett). Plate & Lin (1964) do not quote cf values, but 
only c,/cf, max. I n  table 1 thc distance x, between the obstacle and the point of 
minimum G isgiven as a multiple of So, h or the shear layer thickness a t  reatt.ach- 
mcnt, 8,. 

Clearly, the perturbations are neither ‘weak ’ (scaling on So) nor ‘overwhelming ’ 
(scaling on h).  Indeed Tillman’s and Petryk’s results for distance to  minimum G 
collapse quite well on to the geometric mean, xG = 100J(Soh)  (see figure 4). Of the 
measurements that  stop short of xu, Muellcr’s could conceivably reach the solid 
line in figure 4 eventually ; Plate’s, which do seem to extend as far as cf, max, which 
is not much further upstream than Gmin, are undoubtedly different. The range 
of Reynolds number in these experiments was not sufficiently large to contribute 
much t o  the scatter and we must conclude that the rccovery of the boundary 
layer does depend appreciably on obstacle shape, even when separation from a 
sharp edge occurs. Broadly speaking, the shape of the obstacle downstream of 
separation will affect the strength of recirculation in thc separated-flow region. 
Further analysis of the data will suggest that this has a large effect on the shear 
layer properties downstream of reattachment. Tani, Iuchi & Komoda (1961) 
showed that triangular fillets (similar to  Plate’s ‘hill’ but shallower), and 
obstructions in the recirculation region, apprceiably changed the pressure 
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distribution near reattachment. These results imply that attempts to correlate 
properties of the relaxation regions dowiistream of different obstacles in terms of 
a few parameters describing the perturbation are not likely to succeed, despite 
the success of Good & Joubert (1968) in correlating properties of the flow near a 
simple fence. 

1 -  

6 -  b 
G 

5 .  

f 

I I\\ 
I I\\ 

Equilibrium G -------- 
Approximate equilibrium G 

for Petryk & Brundrelt 
-.-.-.-.-.- .- 

G for pure 
log profile 

_.-- 

‘t 
I I I I 

X l h  

0 I00 200 300 

FIGURE 3. Clauser parametor Q versus distance from obstacle. 0, Tillmen. Potryk &, 
Brundrett: 0, 8,/h = 6.6; V ,  3.74; x ,  2.8; A, 2.24; +, 1.87. 0, present results. 

Figure 3 shows that G (or c,) does not return monotonically to its equilibrium 
value (which would be about 6-5 in the slightly accelerated flow of Petryk & 
Brundrett). It is surprising that Mueller & Robertson, Plate & Lin and Petryk & 
Brundrett should all have claimed a monotonic return to  equilibrium, although 
the first two authors had an insufficiently long test section to  observe the increase 
in G at large x. 

The velocity profiles presented by Tillman, Plate & Lin and Petryk & Brundrett 
can, with hindsight and the measurements t o  be described below, be seen to  
disobey the logarithmic inner law, not only in the region close to reattachment, 
where even the most guileless would expect it to  fail, but for many boundary- 
layer thicknesses downstream. Coles (Coles & Hirst 1969) fitted a logarithmic 
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law to Tillman’s data and implied by omission that he regarded the fit as accep- 
table in view of the experimental difficulties. It is just possible that the dis- 
crepancies (figure 5 )  are caused by the influence of high turbulence on the Pitot 

FIGURE 4. Distance ZG to minimum G versus initial boundary-layer thickness. C, Tillman; 
a, Mueller & Robertson; A, Plate &, Lin; 1, Petryk & Brundrett; 0, present results; 
-, Z G  = 100(Soh)l. 

FIG~IRE 5 .  Semi-logarithmic plot of Tillman’s proflo a t  x/h z 60 (from Coles & Hirst 
(1969), cf. prosent rosults at x/h = 52, figure 8(d) ) .  
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tubes, but the discrepancies show the wrong trend with y and arc much larger 
than if the tube had read high by a quantity of order & p ( T +  v"+ g ) ,  as is 
normally assumed. I n  any case, if the turbulence is high enough to  cause such 
gross measuring errors one would not trust the local-equilibrium assumptions 
which provide the most satisfying justification for the logarithmic law. 
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The turbulence measurements of Mueller Sr. Robertson and of Plate & Lin in 
the relaxation region are qualitatively what might be expected; we do not know 
enough about turbulence to  identify any unusual features analogous to  depar- 
tures from the logarithmic velocity profile. The behaviour of the maximum shear 
stress near reattachment, as measured by Tani et nl. (1961) and Mueller 8: 
Robertson (figure 6) is surprising in two respects. First, the shear stress in the 
free shear layer is significantly higher than the value of about 0.01 pU: found in a 
plane mixing layer, despite the fact that the streamline curvature is in a stabiliz- 
ing sense, and there arc quite large differences between different cases. The 
boundary layers of Mueller & Robertson and of Tani et al. were turbulent a t  
separation, while Aric & Rouse (1956), with the highest shear stress of all 
(0 .02pU3,  had a very thin laminar boundary layer a t  separation. Part of the 
reason for the large values of shear stress is that the effective velocity difference 
across thc free shear layer is not the free-stream velocity Ul; the excess velocity 
outside the separated flow region is small (except perhaps in Arie & Itouse's 
case) but there is always a significant backflow in the separated region, which is 
not a 'dead-water' region (see Tani et al. 1961, figure 10). However, the reversed- 
flow velocity does not seem to exceed 0.2 of the external-flow velocity but the 
shear stress does seem to exceed (1 + 0*2)2 times the plane shear layer value, so 
that this is not a complete explanation. The measurements of Arie & Rouse, and 
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of Alueller & Robertson, show that the shear stress in the reversed-flow region is 
not negligible, so possibly the shear stress in the shear layer is augmented by 
‘feedback ’, that is, the re-entrainment of stress-bearing fluid. However the 
details of such a mechanism are obscure. 

The second curious feature of the shear stress near reattachment is the rapid 
decrease of the maximum shear stress within the shear layer (figure 6). The mean 
velocity gradient 2Ujay on a given streamline will be nearly the same before and 
after the region of rapid distortion near reattachment (mean vorticity is nearly 
conserved), so that one would at first expect the velocity gradient and shear 
stress in the outer part of the reattached shear layer to  remain relatively constant 
until affected by the internal boundary layer growing from the surface. However 
it seemed most unlikely that both sets of measurements shown in figure 6 are 
grossly in error, and it was found necessary t o  simulate the same rapid decrease 
in - uv,,, to  obtain the best agreement between a calculation method and the 
present measurements (see figure 6 and 5 4). These results are strong evidence that 
large changes in turbulence structure occur when the shear layer bifurcates a t  
reattachment. 

Further discussion of the turbulence structure of the reattachment and relaxa- 
tion regions will be deferred until after a description of the present experimental 
results, which have the advantage of a simple configuration, a long test section 
and a set of fairly reliable surface shear-stress measurements. 

. -  

3. The present measurements in the relaxation region 
3.1. Apparatus 

The measurements were made in an open-circuit wind tunnel driven by a centri- 
fugal blower a t  entry. The turbulence level is about 0.07 per cent. The working 
section is 75cm wide, 290cm long and, nominally, 12.5cm high; the actual 
height of the working section can be adjusted to  obtain the desired pressure 
gradient by means of hand-operated jacking screws attached to the flexible roof. 
The backward-facing step, of height 2.5 em, was formed by a fairing in the con- 
traction, so that the actual height of the contraction exit was 10cm. The roof 
height was adjusted to  give zero pressure gradient on the floor downstream of the 
reattachment region but no attempt was made to  simulate an infinite stream in 
the region near the step. 

The measurements were made at  a tunnel speed of 25 my-I in the relaxation 
region. The boundary layer a t  the edge of the step was laminar and 0.32 cm thick. 
A plane mixing layer takes a distance of roughly 100 times its initial thickness to 
attain self-preservation after laminar separation (Bradshaw 1966) ; in the present 
case this distance is 30 cm whereas the distance to reattachment is only about 
15 em, so that even with the thinnest possible laminar boundary layer there is 
some effect on the mixing layer a t  reattachment. 

Mean velocity profiles were measured with a round Pitot tube of 0.1 14 em o.D.,  

and Preston tubes of diameters 0-091, 0.122, 0.204 and 0.287 cm were used for 
surface shear-stress measurements. Further details of the tunnel and apparatus 
are given by Wong (1970). A few turbulence measurements were made, using a 
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Disa 55A38 cross-wire probe and 55D01 constant-temperature anemometers 
(without linearizers), and intcrmittcncy was deduced by computer processing of 
digital records (Antonia & Bradshaw 1971). 

3.2. Results 

Measurements of surface shear stress, using Preston tubes of various sizes with 
Patel’s (1  965) calibration, are shown in figure 7. The cf indicated depends slightly 
on tube diameter but the differences between the largest and smallest tubes arc 
generally less than three per cent. The mean line chosen favours the smaller 
tubes, which are less likely to be affected by departures of the inner-layer 
behaviour from that of a conventional boundary layer. 

0 10 20 30 40 50 ti0 

X P  

FIGURE 7.  Local skin friction coefficient in present experiment. Preston tube diameter: 
0, 04)91 cm; 0, 0.109 cm; 0, 0.122 cm; A, 0.204 cm; 0,  0.287 cm. 

That such departures do occur is clear from the mean velocity profiles shown in 
figure 8 (cf. figure 5). The profiles show a marked dip below the universal ‘inner 
law ’ profile and it is clear that they would not coincide with it throughout the 
inner layer whatever the choice of cf. The coincidence near the surface is of 
course forced by using a cr derived from Preston tubes (except a t  x/h = 10, near 
reattachment, where obvious errors have occurred), but economy of hypothesis 
suggests that the profiles are likely to  depart monotonically from the inner law 
as y increases and the measurements certainly show a basically monotonic 
return to i t  as x increases. However, even a t  the last station, 52 step heights 
downstream of  the step, the profile is still very different from that in a convcn- 
tional boundary layer. The comparatively close agreement (table 2) between the 
measured c, and values derived from the profile family of Thompson (1965) and 
the Ludwieg-Tillman formula 

c - 0.256 x 10-@078H x Rg0.268 
f -  
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FIGURE S ( a ) , ( b ) .  For legend seo facing pago. 
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is surprising a t  first sight (the missing entries correspond to R, and H outside 
Thompson's 'limiting curve' marking the range of validity of his formula). 
I n  fact rather spectacular profile changes would be needed to upset the relation 
between the surface shear stress and the integral parameters, providing that the 
surface shear stress and the velocity fairly close to  the surface are still connected 
by the logarithmic law. Muellcr & Robertson show that the same applies to  
the relation between two integral parameters. 

The dip in the velocity profile is even more surprising when one remembers 
that, at least near reattachment, the shear-stress gradient a7/8y will be positive 

20 

IS 
10 

.x/l1= 34 
2U 

27 
16 

10' 10' 

I 1 , i I  z1 

15 
10 

u, YlV 

FIGURE 8. Moan velocity profiles. (a) s/h = 10, linear plot, ( b )  z / h  = 10, somi-logarithmic 
plot, ( c )  x/h = 16-34, semi-logarithmic plot. Scale of U/u,  refers to z/h = 16; subsequent 
curves displaced by one unit cmli time. ( d )  z/h = 40-52. 
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near the surface as the shear stress rises from a surface value typical of a boun- 
dary layer to  a maximum value more typical of a free shear layer. (Note that these 
measurements, shown in figure 9, were made about 4 step heights downstream of 
reattachment.) This, according to  the local-equilibrium form of the mixing 
length formula (Townsend 1961), 

au _ -  (71P)i - 
ay KY ’ 
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FIGURE 9. Turbulence measurements at z/h = 10. 0, u2/U:;  

0. v”/u:; x ,  - U z I p ; .  

would give a larger velocity gradient than the ‘logarithmic’ value ( ~ , , , / p ) i / K g ,  
whereas the experimental value is of course smaller in the region y < 0.26, where 
the above formula should hold. I n  view of the almost universal use of this 
formula, or the ‘log law’, in calculation methods, it is important to  examine 
possible reasons for the failure of the local-equilibrium formula. The main 
possibilities are (i) that the turbulence is not in local (energy) equilibrium but is 
changing rapidly in the streamwise direction and (ii) that the length scale of the 
turbulence is not proportional to y. Now the boundary-layer calculation method 
of Bradshaw, Ferriss & Atwell (1967) can be regarded as an improvement on the 
mixing-length formula by allowance for departures from local equilibrium, still 
assuming that the turbulence length scale is Ky in thc inner layer. The fact that  
predictions by this method do not show a dip in the velocity profile indicates that  
the actual length scale is not Ky, but increases much more rapidly with y. This 
is plausible because a t  reattachment the length scale, being typical of the mixing 
layer, is presumably constant down to a small value of y. 
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The thickness of the region in which the mean velocity does follow the logarith- 
mic profile - presumably a local-equilibrium region with length scale proportional 
to  y-is roughly 0 . 0 0 8 ~  and approaches the value 0.18, typical of an ordinary 
boundary layer, a t  about xlh = 50. This growth rate of the logarithmic region is 
very nearly the same as that downstream of a small change of surface roughness 
(see Peterson ( 1969) for a good general review). Since the latter is a much smaller 
perturbation than separation and reattachment, one is tempted to suppose that 
the rate at which a local-equilibrium region re-establishes itself is almost inde- 
pendent of the turbulent flow that provides its outer boundary condition. The 
only obviously necessary condition for this is the usual necessary condition for 
the existence of a local-equilibrium region, that its typical vorticity fluctuation 
(ratio of root-mean-square intensity to  integral length scale, say) shall be much 
larger than the typical vorticity fluctuation of the turbulence beyond the outer 
boundary. However it remains to be seen whether this useful extension of the 
local-equilibrium concept can be substantiated. 

The variation of the Clauser parameter G with downstream distance, shown 
in figure 3, is roughly the same as in the fence experiments, but the minimum 
value is higher and the recovery quicker in terms of xlh. Evidently the ‘over- 
whelming perturbation’ caused by a step with h/8, 3 1 causes less severe dis- 
turbance to  the relaxing boundary layer than does a ‘strong perturbation’ with 
h/6,  = O ( l ) ,  though, of course, recovery from the latter is quicker for a given 
boundary-layer thickness 8, upstream of the perturbation. 

One cannot deduce much about the outer-layer turbulence from mean velocity 
profiles alone, but since the lifetimc of the outer-layer eddies is longer than that 
of the small eddies in the inner layer we may expect the outer layer to take even 
longer than the inner layer t o  relax to the ordinary boundary-layer structure. 
Positive evidence for this is provided by measurements of the intermittency at  
z/h = 30 shown in figure 10 (a) ,  where they are compared with the measurements 
of Klebanoff (1955) in a constant-pressure boundary layer. It is difficult to com- 
pare the results with the interniittency in a self-preserving mixing layer. The 
fairest basis seems to be to plot intermittency against UlC; but figure IO(b)  
shows large differences between mixing layer, boundary layer and step flow; if 
anything, the intermitteney in step flow is nearer to  that in a mixing layer, even 
a t  xlh = 30. The fact that the intermittency lies between that of the boundary 
layer and that of the mixing layer indicates that no disturbances of abnormally 
large scale (‘unsteadiness ’) arise in the reattachment region. 

It is interesting to  compare the behaviour of the flow after reattachment with 
that in a boundary layer relaxing from a strong adverse pressure gradient. I n  
the experiment of Bradshaw 55 Ferriss (1965; see run 2400 of Coles & Hirst 
19GI)) a retarded boundary layer with a maximum shear stress of 0 .0033~  Uf and 
a surface shear stress of 0.00Ot;pUq (cf. figure 9) entered a region of constant 
pressure. The surface shear stress rose monotonically and had nearly reached the 
equilibrium value of about 0.00 IpUq a t  35 boundary-laycr thicknesses down- 
stream of the end of retardation. The ratio of maximum shear stress to constant- 
pressure wall stress is not an order of magnitude less than that in the reattaching 
flows but the relaxation process is much less spectacular (Coles (Coles & Hirst 
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1969) suggests that  the logarithmic law breaks down in this flow but the original 
authors showed that turbulence effects onJEattened Pitot tubes were responsible). 
It seems that much of the difference is caused by the rapid distortion of the step 
flow in the reattachment region itself. 

The qualitative features of the reattached boundary layer are as follows. 
(i) A local-equilibrium layer, following the logarithmic law, which spreads out 
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FIGCRE 10. Intermittoncy. (a) Jntermittcney versus y/S. -, present results, z/h = 30; 
--- , equilibrium constant-pressure boundary layer (Klebanoff 1955). ( b )  Intermittoncy 
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from the surface a t  about the same rate as after a weak perturbation caused by a 
change of roughness. 

(ii) A layer in which the apparent mixing length, or a true length scale of the 
turbulence like the dissipation length parameter, increases rapidly above the 
local-equilibrium value with increasing y. This near-discontinuity in length 
scale evidently arises from the bifurcation of the mixing layer a t  reattachment 
which brings what was previously the central region of the mixing layer into 
close contact with the surface. 

(iii) An outer layer which, except for the effects of the rapid distortion near 
reattachment, will retain the characteristics of the mixing layer until the effects 
of the altered boundary condition at  the surface propagate through it. 

4. Optimization of an existing calculation method 
To obtain some quantitative information about the differences in turbulence 

structure between reattached shear layer and an ordinary boundary layer we 
have examined the modifications to  the dissipation length parameter L = 
( - &)*/(dissipation rate), the most important of the empirical turbulence func- 
tions used by Bradshaw, Ferriss & Atwell (1967), required to improve agreement 
between calculations and the present cxperiment. This may seem a poor alter- 
native to turbulence measurements, but in fact it gives us information about a 
turbulence length scale L which would be difficult to get in any other way. It 
may be mentioned that Bradshaw, Perriss & Atwell explicitly stated that the 
(unmodified) empirical functions “would not in general be valid in.. .boundary 
layers just downstream of reattachment ”. 

The calculations were started a t  x / h  = 10, about two boundary-layer thick- 
nesses downstream of reattachment. The calculations include an allowance, in 
the continuity equation, for the effects of lateral convergence in the plane of the 
boundary layer, and differ therein from the results given by Wong (1970); the 
virtual origin of the flow was about 10 metres (400h) downstream so that the 
convergence was too small to account for any major changes in the turbulence 
structure. The optimization of L was carried out using a search program written 
by Dr C. D. Huffman, to whom we are indebted for helpful advice. L was specified 
by a piecewise-analytic formula as shown in figure 11.  The actual values chosen 
for the coefficients were functions of x: 

yJS = O*Ol(x-x,)/S, 

L,,,/6 = 0.095( 1 - 0.3 exp { - (x- x,)/40h)), 

xr being Gh and 6 being of the order of 2-3h. The ‘time constant ’ of 40h is equal 
to  about 25 times the boundary-layer thickness a t  reattachment. Figure 12 shows 
the rcsults for the original L, the optimum L and a run in which the ‘time con- 
stant’ of L,,, was changed from 40h t o  Soh, which made surprisingly little 
difference. The velocity profiles (figure 8, x/h = 16) exhibited a rather more 
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abrupt version of the dip below the logarithmic law found in the experiments. 
This could have been improved by choosing a smoother distribution of L, but 
our object was to assess the gross changes in turbulence structure rather than to 

Y P  
FIGURE 11. Dissipation-length parameter L. ‘Standard ’ distribution compared with 

optimum distribution at x/h = 16. -, ‘modified’ L ;  - - -, ‘standard’ L. 
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FIGURE 12. Results of optimized calculations. 0, exporiment; - - -, ‘standard’ 
optimum L ;  -.-.-, ‘optimum’ L with time constant doubled. 

develop a usable calculation method. An illustration of the dangers of trying to 
extend the validity of a calculation method in this way is provided by the failure 
of the above modifications to effect much improvement in the comparisons with 
Tillman’s measurements, where even larger changes in turbulence structure occur. 
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5. The reattachment region 
A good deal of further work would be needed to document and explain all the 

features of the reattachment region (figure 2); this is a discussion of those 
features t,hat affect the reattached boundary layer and is based partly on obser- 
vations of the latter. 

5.1. The free shear layer 

The differences between the separated shear layer and the plane mixing layer 
(between a uniform stream and still air) seem to be large even when the influence 
of the initial boundary layer is negligible. 

(i) Streamline curvature in the x, y plane tends to reduce the shear stress and 
turbulence intensity (Wyngaard, Tennekes, Lumley & Margolis 1968). 

(ii) Backflow in the separated-flow region increases the effective velocity 
difference across the shear layer and hence tends to increase the shear stress and 
intensity. 

(i i i)  Recirculation and re-entrainment of fluid deflected upstream a t  reattach- 
ment will tend to increase the shear stress and intensity; according to the measure- 
ments of Arie & Rouse and of Mueller & Robertson the shear stress in the reversed- 
flow rcgion is certainly not negligible. 

The angle a t  which the separated shear layer reattaches interacts with the 
entrainment rate and the properties of the separated-flow rcgion. The interaction 
usually scans to be stable, although McEwan (1964) found that strongly oscil- 
latory flow occurred if fluid was withdrawn through the back of a step. Addition 
or withdrawal of fluid due to spanwise flow is important if the ratio of ‘bubble’ 
thickness to span is not large; the present experiments, with a span of 30h, 
showed severe thrce-dimensionality near the ends of the step. 

5.2. Bifurcation of the shear layer at reattachment 

At reattachment the shear layer splits. The fraction of the shear-layer mass flow 
that is deflected upstream depends on the initial boundary-layer thickness; if the 
latter is small a t  least half the shear layer may be deflected upstream to supply 
the entrainment. The following discussion refers to the case where a significant 
fraction is deflected. 

Over most of theseparatcdshear layer the dividing streamline lies near the line 
of maximum shear stress (Aric & Rouse 1956; Tani et al. 1961 ; Mueller & Robert- 
son 19G3), but near reattachment UV on the dividing streamline decreases 
rapidly, to a nominal value of zero at reattachment. The turbulence intensity on 
the diviciing streamline also dccreases, but less rapidly. The general behaviour of 
turbulence approaching a two-dimensional stagnation point has been treated 
throretically by Hunt (private communication) and experimciitally by Bearman 
(private communication). In the present case a large longitudinal rate of strain 
appears (aUjax reaches 0.4 UJh near the surface in the measurements of Tani 
et ul., compared with aU/ay U,/h in the main part of the shear layer) and the 
resulting increase in the longitudinal component of fluctuating vorticity would 
be expected to increase2 and 2 near the surface whiley2 will tend to  decreasc at  
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the rate -?aU/ax (the extra production term in the equation for DG/Dt). 
Opposing this will be the tendency for the normal component of velocity fluctua- 
tion to be reduced by the presence of the solid surface and to  transfer energy to the 
u and w components by irrotational mechanisms; the outcome depends on the 
length scale of the fluctuations considered, so that severe distortion of spectrum 
shapes is likely. 

Thc surface shear stress rises rapidly, by boundary-layer standards, after 
reattachment; (h/pUq) dr,,,/dx is about 0.00006, 0.0002 and 0-0004 in the experi- 
ments of Tillman, Rlueller & Robertson and the present authors rcspectively, but 
none of the measurements near reattachment are entirely reliable. For compari- 
son, (h/p U:) h/ay is of the order of 0.002 in the main part of the shear layer near 
reattachment so that lines of constant shear stress are still nearly parallel to  the 
surface. 

It remains to  discuss the fate of the eddies entering the bifurcation region. 
Defining the larger eddies as bodies of fluid whose dimension in each direction is 
at least as large as the correlation integral length scale, we can see that the larger 
eddies in the separated shear layer, which are known (Bradshaw, Ferr is  & 
Johnson 1964) to  carry a large fraction of the shear stress, are themselves split. 
Whatever happens to  the Reynolds stresses near reattachment, the length scales 
of the turbulence are likely to  decrease significantly. Support for this statement 
conics from the behaviour of the dissipation length parameter L in the optimized 
calculations ($4). I n  a plane mixing layer L, which is a typical scale of the 
energy-containing eddies, is about 0.0252, while the ' mixing length ', 

1 = ( . r : p )h / (way ) ,  

is about 0 . 0 1 6 ~ .  Kow in the present measurcments at x / h  = 10 we find that 1 is 
about 0.032 near the point of maximum shear stress (this is an isolated measure- 
ment; in the experiment of Tani et al. 1 lay between 0 . 0 1 8 ~  and 0 .022~  all the 
way from x / h  = 4 to  x / h  = 12 which is again significantly higher than the value in 
a plane shear layer). Therefore in the absence of any changes in the interaction 
region we would expect L to be, if anything, rather higher than in a plane mixing 
layer (about twice as large if LIZ is really the same). However the value of I; at 
x/h = 10 actually needed t o  optimize the calculations is 0.0122, or about haZf the 
value in a plane mixing layer. Whatever the above arguments may lack in rigour, 
the evidence for a sudden decrease of turbulence length scale as the shear layer 
splits seems fairly strong. The alternative is to suppose that the larger eddies are 
deflected alternately upstream and downstream rather than actually split, but 
one would expect this to  lead to strong unsteadiness and McEwan (1964) found 
none. 

Immediately downstream of reattachment the maximum shear stress, and the 
velocity gradient near the point of maximum shear stress, decrease rapidly 
(Tani et al.; Mueller & Robertson). The present measurements a t  x /h  = 10 
(figure 9) indicate that the shear correlation coefficient is 0.4-0.45, somewhat 
smaller than in a plane mixing layer but not small enough to suggest any strongly 
abnormal relation between the Reynolds stresses. The decrease in shear stress is 
attributable, according t o  most of the suggested constitutive equations for 
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turbulence, to the supposed decrease in turbulence length scale. However the 
decrease in aU/ay in the experiment of Tani et al. (1961) is quite spectacular and 
seems rather too large t o  be attributed to  the action of the Reynolds stresses in 

and the pressure term is not entirely responsible for the discrepancy; however 
the evaluation of second derivatives from the measurements is very uncertain. 
What is certain is that the measured rate of decrease of alJ /2y  with x is much 
larger than an extrapolation of the trend in the mixing layer. One effect that can 
be attributed to  pressure gradients is the rapid increase with x of the velocity 
near the surface, which leads to a region of very small velocity gradient in the 
inner layer (e.g. see figure 8(a) )  and initiates the dip below the logarithmic law 
that is maintained by the large gradient in turbulence length scale near the wall. 

6. Conclusions 
The model suggested by these observations is of a surprisingly complicated 

flow. The key to  the behaviour of the rclaxing boundary layer seems to be the 
rapid distortion of the shear layer near reattachment which depends on what 
fraction of the mass fow is deflected upstream to supply the entrainment. If the 
length of theseparated-flowregion is more than a few times theinitial boundary- 
layer thickness this fraction is significant, and the perturbation is ‘strong’ or 
‘overwhelming’ in the language of $2. Not only do transverse pressure gradients 
and normal-stress gradients affect the flow, as is usual when the boundary-layer 
approximation fails, but the bifurcation of the shear layer produces large and 
irnmediatc changes in the portion that continues to flow downstream. Since the 
dividing streamline is not too far from the line of maximum shcar stress or 
turbulence intensity in the shear layer prior to  reattachment, the large eddies 
that extend over most of the flow and produce much of the shear stress are 
roughly torn in two. The result is a rapid decrease in turbulent shear stress and 
there is strong indirect evidence that the turbulent length scales also decrease 
markedly. The practical conclusion is that  the flow just downstream of reattach- 
ment bears very little resemblance t o  a plane mixing layer or any other sort of 
thin shear layer, even if the residual influence of the boundary layer a t  separation 
is small. A good deal of work will be needed to understand this unusual flow well 
enough to predict its bchaviour in general. 

After reattachment, the turbulent length scales, more especially the dissipa- 
tion length parameter L, are roughly independent of y except for a rapid decrease 
to a nominal value of zero at the surface. The effect of this rapid variation near the 
surface, compared to L = K y  in an ordinary boundary layer, is t o  reduce the 
velocity gradient, and thus the velocity, in the inner layer below the value pre- 
dicted by the logarithmic velocity profile formula. The internal boundary layer in 
which the mean velocity does follow the logarithmic law grows out from the 
surface a t  about the same rate as in the case of a change of surface roughness, but 
the ‘law of the wall’-‘law of the wake’ formulation is inapplicable within a 



Reattachment of a turbulent shear layer 135 

downstream distance of a t  least 30 times the shear-layer thickness at reattach- 
ment. 

The rate at which the outer-layer structure (e.g. L/6) relaxes to  the state of an 
ordinary boundary layer is very slow; the recovery of L is satisfactorily repre- 
sented in a fairly simple case by a ‘time constant ’ of 25 times the shear-layer 
thickness a t  reattachment. Quantities like c, and the Clauser parameter G revert 
to equilibrium constant-pressure values non-monotonically and much more 
slowly than has been suggested by previous experimenters. 
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